
# INTEGRATED CIRCUITS



Product specification Supersedes data of 1995 Sep 28 IC23 Data Handbook 1998 Feb 27



# 74ABT16823A 74ABTH16823A

### FEATURES

- Two sets of high speed parallel registers with positive edge-triggered D-type flip-flops
- Ideal where high speed, light loading, or increased fan-in are required with MOS microprocessors
- Live insertion/extraction permitted
- Power-up 3-State
- 74ABTH16823A incorporates bus-hold data inputs which eliminate the need for external pull-up resistors to hold unused inputs
- Power-up Reset
- Output capability: +64mA/-32mA
- Latch-up protection exceeds 500mA per Jedec Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model

#### QUICK REFERENCE DATA

#### DESCRIPTION

The 74ABT16823A 18-bit bus interface register is designed to eliminate the extra packages required to buffer existing registers and provide extra data width for wider data/address paths of buses carrying parity.

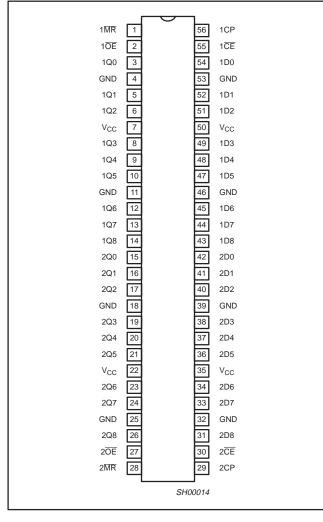
The 74ABT16823A has two 9-bit wide buffered registers with Clock Enable ( $\overline{nCE}$ ) and Master Reset ( $\overline{nMR}$ ) which are ideal for parity bus interfacing in high microprogrammed systems.

The registers are fully edge-triggered. The state of each D input, one set-up time before the Low-to-High clock transition is transferred to the corresponding flip-flop's Q output.

Two options are available, 74ABT16823A which does not have the bus-hold feature and 74ABTH16823A which incorporates the bus-hold feature.

| SYMBOL                               | PARAMETER                       | CONDITIONS<br>T <sub>amb</sub> = 25°C; GND = 0V | TYPICAL    | UNIT |
|--------------------------------------|---------------------------------|-------------------------------------------------|------------|------|
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation delay<br>nCP to nQx | $C_L = 50 pF; V_{CC} = 5V$                      | 2.3<br>1.9 | ns   |
| C <sub>IN</sub>                      | Input capacitance               | $V_{I} = 0V \text{ or } V_{CC}$                 | 4          | pF   |
| C <sub>OUT</sub>                     | Output capacitance              | $V_{O} = 0V \text{ or } V_{CC}; 3-State$        | 6          | pF   |
| Iccz                                 | Quiescent supply current        | Outputs disabled; $V_{CC} = 5.5V$               | 500        | μΑ   |
| ICCL                                 | Quicacent supply current        | Outputs low; $V_{CC} = 5.5V$                    | 9          | mA   |

#### **ORDERING INFORMATION**

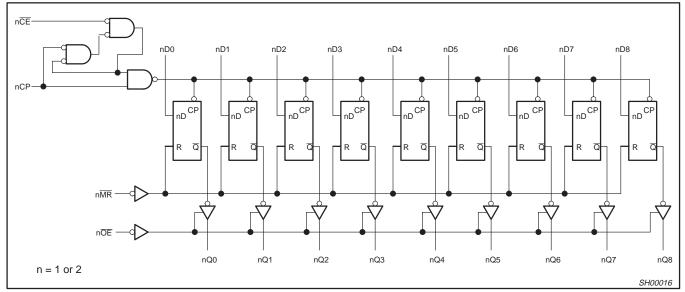

| PACKAGES                     | TEMPERATURE RANGE | OUTSIDE NORTH AMERICA | NORTH AMERICA | DWG NUMBER |
|------------------------------|-------------------|-----------------------|---------------|------------|
| 56-Pin Plastic SSOP Type III | –40°C to +85°C    | 74ABT16823A DL        | BT16823A DL   | SOT371-1   |
| 56-Pin Plastic TSSOP Type II | –40°C to +85°C    | 74ABT16823A DGG       | BT16823A DGG  | SOT364-1   |
| 56-Pin Plastic SSOP Type III | –40°C to +85°C    | 74ABTH16823A DL       | BH16823A DL   | SOT371-1   |
| 56-Pin Plastic TSSOP Type II | –40°C to +85°C    | 74ABTH16823A DGG      | BH16823A DGG  | SOT364-1   |

#### **PIN DESCRIPTION**

| PIN NUMBER                                                               | SYMBOL                    | FUNCTION                               |
|--------------------------------------------------------------------------|---------------------------|----------------------------------------|
| 2, 27                                                                    | 10E, 20E                  | Output enable input (active-Low)       |
| 54, 52, 51, 49, 48, 47, 45, 44, 43<br>42, 41, 40, 38, 37, 36, 34, 33, 31 | 1D0-1D8<br>2D0-2D8        | Data inputs                            |
| 3, 5, 6, 8, 9, 10, 12, 13, 14<br>15, 16, 17, 19, 20, 21, 23, 24, 26      | 1Q0-1Q8<br>2Q0-2Q8        | Data outputs                           |
| 56, 29                                                                   | 1CP, 2CP                  | Clock pulse input (active rising edge) |
| 55, 30                                                                   | 1 CE, 2 CE                | Clock enable input (active-Low)        |
| 1, 28                                                                    | 1 <u>MR</u> , 2 <u>MR</u> | Master reset input (active-Low)        |
| 4, 11, 18, 25, 32, 39, 46, 53                                            | GND                       | Ground (0V)                            |
| 7, 22, 35, 50                                                            | V <sub>CC</sub>           | Positive supply voltage                |

## 74ABT16823A 74ABTH16823A

### **PIN CONFIGURATION**




## LOGIC SYMBOL (IEEE/IEC)

|                 |       |        |        | 1  |        |
|-----------------|-------|--------|--------|----|--------|
| 1 <del>0E</del> | _2 _1 | EN1    |        |    |        |
| 1MR             |       | R2     |        |    |        |
| 1CE             | _551  | ⊆ G3   |        |    |        |
| 1CP             | _56   | -> 3C4 |        |    |        |
| 2OE             | 27    | EN5    |        |    |        |
| 2MR             | 28    | → R6   |        |    |        |
| 2CE             | 30    | └ G7   |        |    |        |
| 2CP             | 29    |        |        |    |        |
|                 | 54    |        |        | 3  |        |
| 1D0             | 52    | 4D     | 1, 2 ∇ | 5  | 1Q0    |
| 1D1             | 51    | -      |        | 6  | 1Q1    |
| 1D2             | 49    | -      |        |    | 1Q2    |
| 1D3             |       |        |        | 8  | 1Q3    |
| 1D4             | 48    |        |        | 9  | 1Q4    |
| 1D5             |       |        |        | 10 | 1Q5    |
| 1D6             |       | -      |        | 12 | 1Q6    |
| 1D7             | 44    |        |        | 13 | 1Q7    |
| 1D8             | 43    | -      |        | 14 | 1Q8    |
| 2D0             | 42    | _      |        | 15 | 2Q0    |
| 2D1             | _41   | 8D     | 5,6    | 16 | 2Q1    |
| 2D2             | 40    | _      |        | 17 | 2Q2    |
| 2D3             | 38    |        |        | 19 | 2Q3    |
| 2D4             | 37    | _      |        | 20 | 2Q4    |
| 2D5             | 36    | _      |        | 21 | 2Q5    |
| 2D6             | 34    |        |        | 23 | 2Q6    |
| 2D7             | 33    |        |        | 24 | 2Q7    |
| 2D8             | 31    |        |        | 25 | 2Q8    |
|                 |       |        |        | SF | 100015 |

## 74ABT16823A 74ABTH16823A

### LOGIC DIAGRAM



## **FUNCTION TABLE**

|     |     | INPUTS |     |     | OUTPUTS   | OPERATING MODE     |
|-----|-----|--------|-----|-----|-----------|--------------------|
| nOE | nMR | nCE    | nCP | nDx | nQ0 – nQ8 | OFERATING MODE     |
| L   | L   | Х      | Х   | Х   | L         | Clear              |
| L   | Н   | L      | Ŷ   | h   | Н         | Load and read data |
| L   | Н   | L      | Ŷ   | I   | L         |                    |
| L   | Н   | Н      | ¢   | Х   | NC        | Hold               |
| Н   | Х   | Х      | Х   | Х   | Z         | High impedance     |

H = High voltage level

High voltage level one set-up time prior to the Low-to-High clock transition h =

L = Low voltage level

I = Low voltage level one set-up time prior to the Low-to-High clock transition NC= No change

= Don't care

=

XZ↑↑ High impedance "off" state Low to High clock transition =

Not a Low-to-High clock transition =

## 74ABT16823A 74ABTH16823A

## ABSOLUTE MAXIMUM RATINGS<sup>1, 2</sup>

| SYMBOL           | PARAMETER                      | CONDITIONS                  | RATING       | UNIT |
|------------------|--------------------------------|-----------------------------|--------------|------|
| V <sub>CC</sub>  | DC supply voltage              |                             | -0.5 to +7.0 | V    |
| I <sub>IK</sub>  | DC input diode current         | V <sub>1</sub> < 0          | -18          | mA   |
| VI               | DC input voltage <sup>3</sup>  |                             | -1.2 to +7.0 | V    |
| I <sub>OK</sub>  | DC output diode current        | V <sub>O</sub> < 0          | -50          | mA   |
| V <sub>OUT</sub> | DC output voltage <sup>3</sup> | output in Off or High state | -0.5 to +5.5 | V    |
|                  |                                | output in Low state         | 128          |      |
| IOUT             | DC output current              | output in High state        | -64          | mA   |
| T <sub>stg</sub> | Storage temperature range      |                             | -65 to 150   | °C   |

NOTES:

 Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.
The input and output voltage rating may be exceeded if the input and output current ratings are observed.

3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

### **RECOMMENDED OPERATING CONDITIONS**

| SYMBOL           | PARAMETER                            | LIM | UNIT            |      |
|------------------|--------------------------------------|-----|-----------------|------|
| STWBOL           | FARAMETER                            | MIN | MAX             | UNIT |
| V <sub>CC</sub>  | DC supply voltage                    | 4.5 | 5.5             | V    |
| VI               | Input voltage                        | 0   | V <sub>CC</sub> | V    |
| V <sub>IH</sub>  | High-level input voltage             | 2.0 |                 | V    |
| V <sub>IL</sub>  | Low-level input voltage              |     | 0.8             | V    |
| I <sub>ОН</sub>  | High-level output current            |     | -32             | mA   |
| I <sub>OL</sub>  | Low-level output current             |     | 64              | mA   |
| Δt/Δv            | Input transition rise or fall rate   | 0   | 10              | ns/V |
| T <sub>amb</sub> | Operating free-air temperature range | -40 | +85             | °C   |

## 74ABT16823A 74ABTH16823A

## **DC ELECTRICAL CHARACTERISTICS**

|                    |                                                      |                                                                              |                                    | LIMITS                   |       |      |                                      |      |    |
|--------------------|------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------|--------------------------|-------|------|--------------------------------------|------|----|
| SYMBOL PARAMETER   |                                                      | TEST CONDITIONS                                                              |                                    | T <sub>amb</sub> = +25°C |       |      | T <sub>amb</sub> = −40°C<br>to +85°C |      |    |
|                    |                                                      |                                                                              |                                    | MIN                      | ТҮР   | MAX  | MIN                                  | MAX  |    |
| V <sub>IK</sub>    | Input clamp voltage                                  | V <sub>CC</sub> = 4.5V; I <sub>IK</sub> = -18mA                              |                                    |                          | -0.9  | -1.2 |                                      | -1.2 | V  |
|                    |                                                      | $V_{CC}$ = 4.5V; $I_{OH}$ = -3mA; $V_{I}$ = $V_{II}$                         | or V <sub>IH</sub>                 | 2.5                      | 2.9   |      | 2.5                                  |      | V  |
| V <sub>OH</sub>    | High-level output voltage                            | $V_{CC} = 5.0V; I_{OH} = -3mA; V_I = V_{II}$                                 | or V <sub>IH</sub>                 | 3.0                      | 3.4   |      | 3.0                                  |      | V  |
|                    |                                                      | $V_{CC} = 4.5V; I_{OH} = -32mA; V_{I} = V$                                   | ′ <sub>IL</sub> or V <sub>IH</sub> | 2.0                      | 2.4   |      | 2.0                                  |      | V  |
| V <sub>OL</sub>    | Low-level output voltage                             | $V_{CC}$ = 4.5V; $I_{OL}$ = 64mA; $V_I$ = $V_{IL}$                           | or V <sub>IH</sub>                 |                          | 0.42  | 0.55 |                                      | 0.55 | V  |
| V <sub>RST</sub>   | Power-up output low voltage <sup>3</sup>             | $V_{CC} = 5.5V; I_{OL} = 1mA; V_I = GNI$                                     | D or V <sub>CC</sub>               |                          | 0.13  | 0.55 |                                      | 0.55 | V  |
| l <sub>i</sub>     | Input leakage curent                                 | $V_{CC}$ = 5.5V; $V_{I}$ = $V_{CC}$ or GND                                   |                                    |                          | ±0.01 | ±1   |                                      | ±1   | μA |
|                    | Input leakage current                                | $V_{CC}$ = 5.5V; $V_{I}$ = $V_{CC}$ or GND                                   | Control<br>pins                    |                          | ±0.01 | ±1   |                                      | ±1   | μΑ |
| I <sub>I</sub>     | 74ABTH16823A                                         | $V_{CC} = 5.5V; V_{I} = V_{CC}$                                              |                                    |                          | 0.01  | 1    |                                      | 1    | μΑ |
|                    |                                                      | $V_{CC} = 5.5V; V_I = 0$                                                     | Data pins                          |                          | -2    | -3   |                                      | -5   | μΑ |
|                    |                                                      | $V_{CC} = 4.5 V; V_{I} = 0.8 V$                                              |                                    | 35                       |       |      | 35                                   |      |    |
| I <sub>HOLD</sub>  | Bus Hold current inputs <sup>5</sup><br>74ABTH16823A | $V_{CC} = 4.5 V; V_{I} = 2.0 V$                                              |                                    | -75                      |       |      | -75                                  |      | μA |
|                    |                                                      | $V_{CC} = 5.5V; V_{I} = 0 \text{ to } 5.5V$                                  |                                    | ±800                     |       |      |                                      |      |    |
| I <sub>OFF</sub>   | Power-off leakage current                            | $V_{CC}$ = 0.0V; $V_{O}$ or $V_{I} \le 4.5V$                                 |                                    |                          | ±5.0  | ±100 |                                      | ±100 | μΑ |
| I <sub>PU/PD</sub> | Power-up/down 3-State output current <sup>4</sup>    | $V_{CC} = 2.1V$ ; $V_O = 0.5V$ ; $V_I = GNE$<br>$V_{OE} = Don't care$        | D or V <sub>CC</sub> ,             |                          | ±5.0  | ±50  |                                      | ±50  | μA |
| I <sub>OZH</sub>   | 3-State output High current                          | $V_{CC} = 5.5V; V_{O} = 2.7V; V_{I} = V_{IL}$                                | or V <sub>IH</sub>                 |                          | 1.0   | 10   |                                      | 10   | μA |
| I <sub>OZL</sub>   | 3-State output Low current                           | $V_{CC} = 5.5V; V_{O} = 0.5V; V_{I} = V_{IL}$                                | or V <sub>IH</sub>                 |                          | -1.0  | -10  |                                      | -10  | μA |
| I <sub>CEX</sub>   | Output High leakage<br>current                       | $V_{CC} = 5.5V; V_{O} = 5.5V; V_{I} = GNE$                                   | O or V <sub>CC</sub>               |                          | 50    | 50   |                                      | 50   | μA |
| Ι <sub>Ο</sub>     | Output current <sup>1</sup>                          | $V_{CC} = 5.5V; V_{O} = 2.5V$                                                |                                    | -50                      | -80   | -180 | -50                                  | -180 | mA |
| I <sub>CCH</sub>   |                                                      | $V_{CC}$ = 5.5V; Outputs High, $V_{I}$ = GND or $V_{CC}$                     |                                    |                          | 0.5   | 1    |                                      | 1    | mA |
| I <sub>CCL</sub>   | Quiescent supply current                             | $V_{CC}$ = 5.5V; Outputs Low, $V_{I}$ = GND or $V_{CC}$                      |                                    |                          | 9.0   | 19   |                                      | 19   | mA |
| I <sub>CCZ</sub>   |                                                      | $V_{CC}$ = 5.5V; Outputs 3–State;<br>V <sub>1</sub> = GND or V <sub>CC</sub> |                                    |                          | 0.5   | 1    |                                      | 1    | mA |
| $\Delta I_{CC}$    | Additional supply current per input pin <sup>2</sup> | $V_{CC}$ = 5.5V; one input at 3.4V, other inputs at $V_{CC}$ or GND          |                                    |                          | 0.2   | 1    |                                      | 1    | mA |

#### NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
This is the increase in supply current for each input at 3.4V.
For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.
This parameter is valid for any V<sub>CC</sub> between 0V and 2.1V with a transition time of up to 10msec. From V<sub>CC</sub> = 2.1V to V<sub>CC</sub> = 5V ± 10% a transition time of up to 100µsec is permitted.
This is the bus hold overdrive current required to force the input to the opposite logic state.

## 74ABT16823A 74ABTH16823A

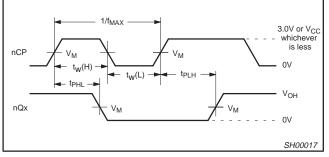
### AC CHARACTERISTICS

GND = 0V,  $t_{R}$  =  $t_{F}$  = 2.5ns,  $C_{L}$  = 50pF,  $R_{L}$  = 500 $\Omega$ 

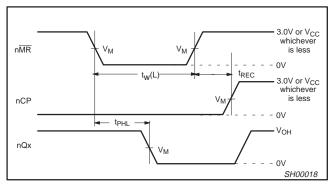
|                                      |                                                |          |                                                     | LIMITS     |            |                                                    |            |     |
|--------------------------------------|------------------------------------------------|----------|-----------------------------------------------------|------------|------------|----------------------------------------------------|------------|-----|
| SYMBOL PARAMETER                     |                                                | WAVEFORM | T <sub>amb</sub> = +25°C<br>V <sub>CC</sub> = +5.0V |            |            | T <sub>amb</sub> =<br>to +<br>V <sub>CC</sub> = +5 | UNIT       |     |
|                                      |                                                |          | MIN                                                 | TYP        | MAX        | MIN                                                | MAX        |     |
| f <sub>MAX</sub>                     | Maximum clock frequency                        | 1        | 140                                                 | 190        |            | 140                                                |            | MHz |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation delay<br>nCP to nQx                | 1        | 1.4<br>1.2                                          | 2.3<br>1.9 | 3.2<br>2.6 | 1.4<br>1.2                                         | 3.7<br>2.9 | ns  |
| t <sub>PHL</sub>                     | Propagation delay<br>nMR to nQx                | 2        | 2.0                                                 | 3.3        | 4.3        | 2.0                                                | 5.0        | ns  |
| t <sub>PZH</sub><br>t <sub>PZL</sub> | Output enable time<br>to High and Low level    | 4<br>5   | 1.3<br>1.2                                          | 2.4<br>2.1 | 3.2<br>2.9 | 1.3<br>1.2                                         | 3.9<br>3.4 | ns  |
| t <sub>PHZ</sub><br>t <sub>PLZ</sub> | Output disable time<br>from High and Low level | 4<br>5   | 1.7<br>1.6                                          | 2.9<br>2.3 | 4.0<br>3.2 | 1.7<br>1.6                                         | 4.7<br>3.4 | ns  |

## AC SETUP REQUIREMENTS

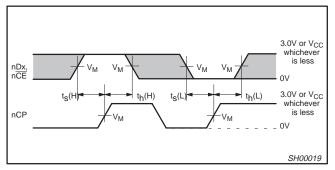
GND = 0V,  $t_R = t_F$  = 2.5ns,  $C_L$  = 50pF,  $R_L$  = 500 $\Omega$ 


|                                          |                                       |          | LIMITS                                  |                    |                                                                  |      |
|------------------------------------------|---------------------------------------|----------|-----------------------------------------|--------------------|------------------------------------------------------------------|------|
| SYMBOL                                   | PARAMETER                             | WAVEFORM | T <sub>amb</sub> =<br>V <sub>CC</sub> = | = +25°C<br>⊧ +5.0V | T <sub>amb</sub> = −40 to +85°C<br>V <sub>CC</sub> = +5.0V ±0.5V | UNIT |
|                                          |                                       |          | MIN                                     | TYP                | MIN                                                              |      |
| t <sub>s</sub> (H)<br>t <sub>s</sub> (L) | Setup time, High or Low<br>nDx to nCP | 3        | 2.0<br>1.5                              | 1.3<br>0.9         | 2.0<br>1.5                                                       | ns   |
| t <sub>h</sub> (H)<br>t <sub>h</sub> (L) | Hold time, High or Low<br>nDx to nCP  | 3        | 1.5<br>1.5                              | -0.9<br>-1.2       | 1.5<br>1.5                                                       | ns   |
| t <sub>w</sub> (H)<br>t <sub>w</sub> (L) | nCP pulse width<br>High or Low        | 1        | 3.3<br>3.3                              | 1.7<br>1.7         | 3.3<br>3.3                                                       | ns   |
| t <sub>s</sub> (H)<br>t <sub>s</sub> (L) | Setup time, High or Low<br>nCE to nCP | 3        | 1.5<br>2.0                              | 0.9<br>0.9         | 1.5<br>2.0                                                       | ns   |
| t <sub>h</sub> (H)<br>t <sub>h</sub> (L) | Hold time, High or Low<br>nCE to nCP  | 3        | 1.5<br>1.5                              | -0.8<br>-0.9       | 1.5<br>1.5                                                       | ns   |
| t <sub>w</sub> (L)                       | nMR pulse width, Low                  | 2        | 3.0                                     | 1.7                | 3.0                                                              | ns   |
| t <sub>rec</sub>                         | Recovery time<br>nMR to nCP           | 2        | 2.5                                     | 1.0                | 2.5                                                              | ns   |

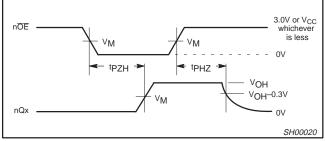
## 74ABT16823A 74ABTH16823A


#### AC WAVEFORMS

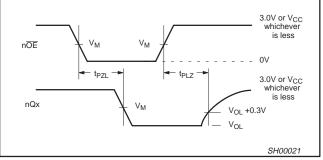
For all waveforms,  $V_M = 1.5V$ .


The shaded areas indicate when the input is permitted to change for predictable output performance.




Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width, and Maximum Clock Frequency

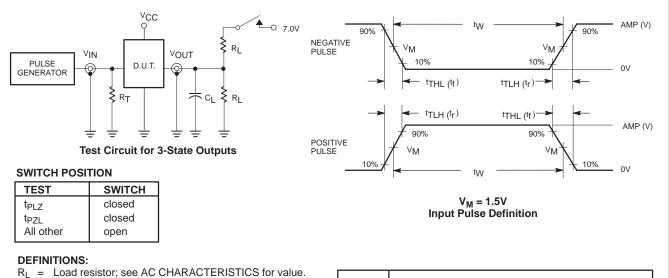



Waveform 2. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time



Waveform 3. Data Setup and Hold Times



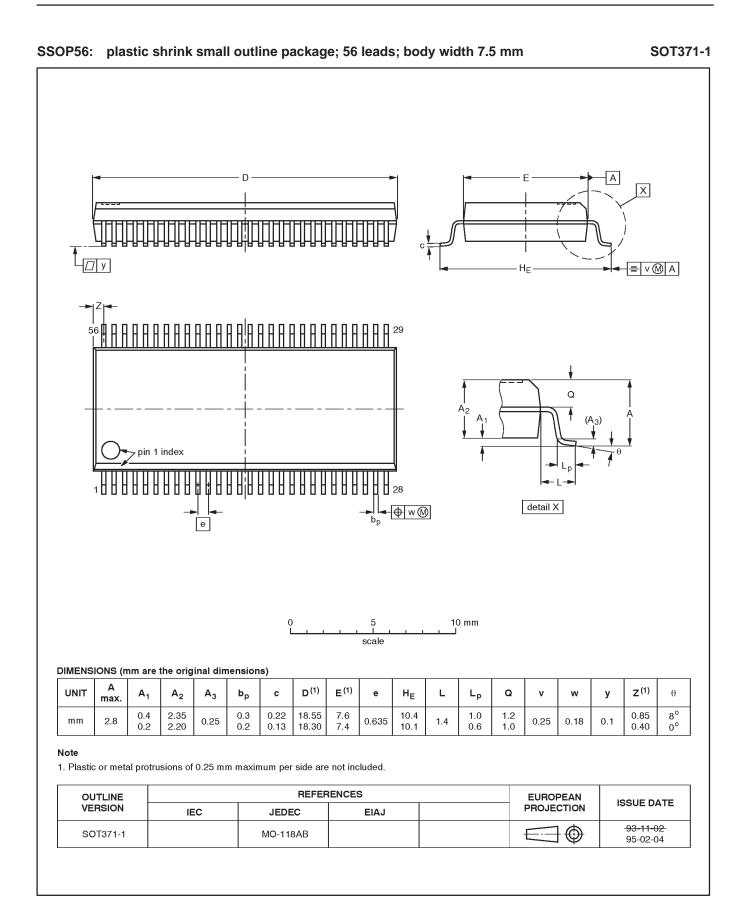

Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time from High Level



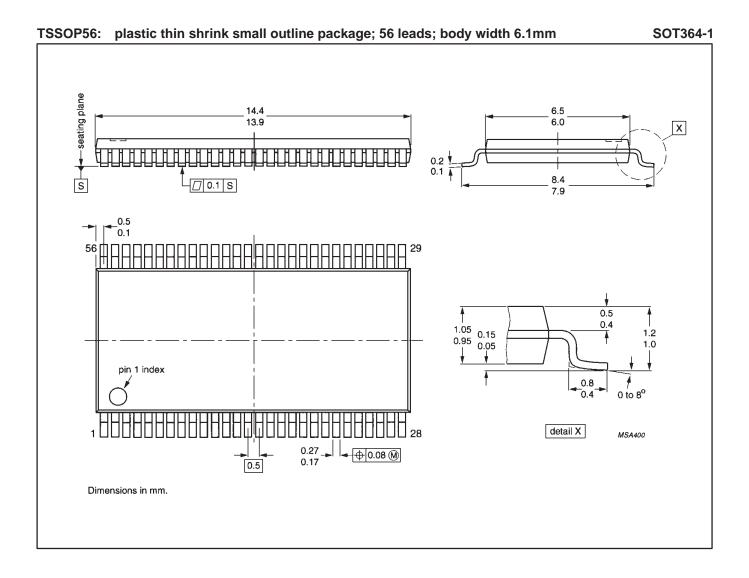
Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

## 74ABT16823A 74ABTH16823A

### **TEST CIRCUIT AND WAVEFORM**




- $R_T =$ Termination resistance should be equal to ZOUT of pulse generators.


| FAMILY  | INPUT PULSE REQUIREMENTS |           |                |                |                |  |  |
|---------|--------------------------|-----------|----------------|----------------|----------------|--|--|
|         | Amplitude                | Rep. Rate | t <sub>w</sub> | t <sub>R</sub> | t <sub>F</sub> |  |  |
| 74ABT16 | 3.0V                     | 1MHz      | 500ns          | 2.5ns          | 2.5ns          |  |  |

SH00022

## 74ABT16823A 74ABTH16823A



## 74ABT16823A 74ABTH16823A



#### Data sheet status

| Data sheet<br>status      | Product<br>status | Definition [1]                                                                                                                                                                                                                                                  |
|---------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective specification   | Development       | This data sheet contains the design target or goal specifications for product development.<br>Specification may change in any manner without notice.                                                                                                            |
| Preliminary specification | Qualification     | This data sheet contains preliminary data, and supplementary data will be published at a later date.<br>Philips Semiconductors reserves the right to make chages at any time without notice in order to<br>improve design and supply the best possible product. |
| Product specification     | Production        | This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.                                                            |

[1] Please consult the most recently issued datasheet before initiating or completing a design.

#### Definitions

**Short-form specification** — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

**Application information** — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

#### Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

**Right to make changes** — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 05-96 9397-750-03502

Let's make things better.



PHILIPS